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Abstract

In the complex plane, an even number of reflection through lines or circles can be expressed in
complex coordinates as a linear fractional transformationw = (az+b)/(cz+d) with a, b, c, d ∈ C
andad− bc 6= 0. This also holds inR4: an even number of reflections through spheres or planes
correspond to transformationsk = (ah+ b)(ch+ d)−1 with a, b, c, d ∈ H. A theorem by Poincaré
about direct isometries of hyperbolic spaces may therefore be rephrased: direct isometries ofH5

correspond to quaternionic linear fractional transformations. © 2001 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Möebius transformations sometime refer to linear fractional transformations with coeffi-
cients inR,CorH [3], and sometime refer to the group of homeomorphisms of the one point
compactification ofRn generated by reflections through spheres and planes. HereMöbn

will denote this last group, andMöb+
n the subgroup ofMöbn consisting of transformations

that preserve the orientation. Elements ofMöb+
n are those ofMöbn that may be written as

a product of an even number of reflections.
It is well-known that an even number of reflections through lines and circles in the plane

(i.e. elements ofMöb+
2 ), when expressed in complex coordinates give linear fractional

transformationsw = (az+ b)/(cz+ d) with a, b, c, d ∈ C andad− bc 6= 0.
InR3, let(x1, x2, x3) denote the standard coordinates. The planex3 = 0 is identified with

the complex plane. A reflection through a circle in the complex plane may be thought as the
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restriction of a reflection through a sphere whose center belongs to the planex3 = 0. In the
upper-half space model for the Lobatchevski spaceH3, reflection through such spheres are
isometries. This gives the connection between the groupMöb2 and Isom(H3). Poincaré
proved [5] that it holds in any dimension:

Möbn ∼ Isom(Hn+1).

Direct isometries correspond to an even number of reflections.
The aim of this paper is to detail the correspondence between linear fractional transfor-

mation with coefficients inH and reflections through planes and spheres inR4.
By application of Poincaré’s theorem, this will provide a description of direct isometries

of H5 in terms of linear fractional maps with coefficients inH.

2. HPHPHP1

In the complex case, linear fractional maps correspond to the projection onCP1 of linear
mappings ofC2 (see [4]). The same construction can be done in the quaternionic case
although some care must be taken because of non-commutativity.

Definition 1. Define onH2 \ {(0, 0)} the following binary relation:

(h1, h2) ≡ (k1, k2) ⇔ ∃q ∈ H∗ s.a. h1 = k1q, h2 = k2q.

We denoteHP1 the quotient space, and call it the (right) quaternionic projective space.

The real dimension of this manifold is 4. We use homogeneous coordinates(h1 : h2),
and a map fromHP1\{(1 : 0)} toH:

π HP1\{(1 : 0)} 7→ H

(h1 : h2) 7→ h1h
−1
2 .

Definition 2. A mapping of the formΦ(h1, h2) = (ah1 + bh2, ch1 + dh2) will be called a
(left-)linear mapping (ofH2). When(0, 0) is the only solution of the system

au+ bv = 0,

cu+ dv = 0,

we say thatΦ is non-degenerate.

Let nowΦ be a non-degenerate linear mapping. One checks easily thatΦ is a homeo-
morphism ofH2. Its inverse does not look like one would expect. For instance, ifa, b, c, d

are non-zero quaternions, such thatΦ(h1, h2) = (ah1 +bh2, ch1 +dh2) is non-degenerate,
then

Φ−1
(

k1

k2

)
=

(
(a − bd−1c)−1k1 − (db−1a − c)−1k2

(b − ac−1d)−1k1 − (ca−1b − d)−1k2

)
.
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In this case,Φ induces a homeomorphism onHP1. Such homeomorphisms can be seen
through the projectionπ and produce linear fractional mappings ofH. As in the complex
case, the pole of this mapping correspond to the point ofHP1 whose image is(1 : 0).

Definition 3. A quaternionic (left-)linear fractional map is an application

ϕ H 7→ H,

h 7→ (ah+ b)(ch+ d)−1,

with a, b, c, d ∈ H be such that the corresponding linear mappingΦ(h1, h2) =
(ah1 + bh2, ch1 + dh2) is non-degenerate.

The set of these transformations form a group under composition.

3. The group Möb4Möb4Möb4

Consider firstRS the reflection through the unit sphereS ofR4. We denote(x1, x2, x3, x4)

the standard coordinates inR4. Letx denote the quaternion with components(x1, x2, x3, x4)

in the base 1, i, j, k. The reflectionRS can be expressed as

RS(x) = 1

x̄
,

wherex̄ denotes the quaternionic conjugation. IfS denotes a sphere with centerc ∈ H and
radiusr > 0 then the reflection throughS : RS has a similar expression

RS(x) = c + r2(x̄ − c̄)−1.

Let nowRP denote the reflection through a hyperplaneP orthogonal toa 6= 0 and containing
q. The quaterniona can be chosen such that|a| = 1.

RP (x) = −a(x̄ − q̄)a + q.

One checks immediately that the composition of an even number of reflections through
planes or spheres can be expressed as a mapϕ(h) = (ah+b)(ch+d)−1 with a, b, c, d ∈ H.

Let for instanceR1 andR2 be two reflections through spheres with centersq1 andq2 and
radii r1 andr2.

R2 ◦ R1(x) = c2 + r2
2

(
c̄1 + r2

1(x − c1)
−1 − c̄2

)−1

= c2 + r2
2(x − c1)

(
(c̄1 − c̄2)x + r2

1 − |c1|2 + c̄2c1

)−1

=
(
c2(c̄1 − c̄2) + r2

2

)
x + (

r2
1c2 − r2

2c1 − c2(c̄1 − c̄2)c1
)

(c̄1 − c̄2)x + (
r2
1 − (c̄1 − c̄2)c1

) ,

with the convention thata/b = ab−1.
In the plane, the composition of an even number of reflections through lines and circles

give rise to mapsw = (az+ b)/(cz+ d) with a, b, c, d ∈ C with ad− bc 6= 0.
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We saw that reflections through spheres and planes inR
4 are expressed in quaternionic

coordinates as mapsk = (ah+ b)(ch+ d)−1, with a, b, c, d ∈ H. Here againa, b, c and
d satisfy some extra condition. But because of non-commutativity, this extra condition is
slightly different: it says that(0, 0) is the only solution of

au+ bv = 0,

cu+ dv = 0.

Such systems are called non-degenerate. Simple calculation show that a CNS for this system
to be non-degenerated, is that

c 6= 0,

b 6= ac−1d,
or

c = 0,

ad 6= 0.

Let us check that the coefficients ofR2 ◦R1 match this condition. Let us assume first that
c1 6= c2, and letκ = (c̄1 − c̄2). We have to check that(

c2κ + r2
2

)
X + (

r2
1c2 − r2

2c1 − c2κc1
)
Y= 0,

κX + (
r2
1 − κc1

)
Y = 0,

has only trivial solution. And since we have assumed thatκ 6= 0, we have to just verify that

(c2κ + r2
2)k−1(r2

1 − κc1) 6= (r2
1c2 − r2

2c1 − c2κc1),

but

(c2κ + r2
2)k−1(r2

1 − κc1) = (r2
1c2 − r2

2c1 − c2κc1) + r2
1r2

2κ−1.

Sincer1 andr2 are strictly positive,r2
1r2

2κ−1 6= 0, and the system has only trivial solution.
Suppose now thatc1 = c2. Then

R2 ◦ R1(x) = r2
2

r2
1

(x − c1) + c2,

and the corresponding system has only trivial solution.
We thus have proved the following:

Proposition 1. An even number of reflections through spheres and planes inR
4 is a linear

fractional transformation.

In the sequel we prove that the converse is true: suppose thatϕ(x) = (ax+b)(cx+d)−1 is
a linear fractional transformation,ϕ can be decomposed into the product of an even number
of reflections through planes or spheres inR4.

Lemma 1. The following mappings belong toMöb+
4 , which means that they may be de-

composed into the product of an even number of reflections:
1. h → h−1.
2. h → h + a, for any quaternion a.
3. h → ah andh → ha for any non-zero quaternion.
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Proof. Let τa be the translation of vectora in R4: it can be realised as the composition
of two reflections through two parallel planes orthogonal toa and such that the distance
between the two is equal to|a|/2.

Indeed, we saw that the reflectionRP through a planeP containingq ∈ H and orthogonal
to a unit quaternionu may be expressed in quaternionic coordinates:

RP (x) = −u(x̄ − q̄)u + q.

Let R1 be the reflection through the plane containingO and orthogonal toa andR2 be the
reflection through the plane containingq = a/2 and orthogonal toa. Let u = a/|a|, we
have

R1(x) = −ux̄u,

R2(x) = −u

(
x̄ − ā

2

)
u +

(a

2

)
,

thus

R2 ◦ R1(x) = x +
(

uā

2u

)
+

(a

2

)
= x + a.

The quaternionic inversionh → h−1 result from one reflection through the unit sphere,
and quaternionic conjugation, which may in turn be decomposed into three reflections
through planesx2 = 0, x3 = 0 andx4 = 0.

Let nowa be a unit quaternion. The mappingα(h) = ah is orthogonal with determinant
1. Let A denote the matrix associated toα with respect to the standard basis ofH. The
characteristic ploynomial ofA is p(t) = (1− Re(a)t + t2)2, where Re(a) denotes the real
part of a. Thus, there is an orthonormal basis relative to which the matrix ofα is of the
following form:




cosϕ − sinϕ 0 0
sinϕ cosϕ 0 0

0 0 cosϕ − sinϕ

0 0 sinϕ cosϕ


 .

This matrix decomposes into the product of four reflections. To see this, first remember that
any rotation inR2 decomposes into the product of two reflections. Here we have




cosϕ − sinϕ 0 0
sinϕ cosϕ 0 0

0 0 cosϕ − sinϕ

0 0 sinϕ cosϕ


 = R1R2,

with

R1 =




cosϕ − sinϕ 0 0
sinϕ cosϕ 0 0

0 0 1 0
0 0 0 1


 , and R2 =




1 0 0 0
0 1 0 0
0 0 cosϕ − sinϕ

0 0 sinϕ cosϕ


 .
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It is thus enough to show thatR1 decomposes into two reflections. But this follows directly
from what we have said about rotations in the plane. Letu = (− sinϕ/2, cosϕ/2, 0, 0)

andv = (0, 1, 0, 0). Simple calculation shows that

Ru ◦ Rv =




cosϕ − sinϕ 0 0
sinϕ cosϕ 0 0

0 0 1 0
0 0 0 1


 .

Let nowa be a strictly positive real number. In the complex plane, the mappingz → az
corresponds to two reflections through concentric circles. InR

4 the transformationh → ah
corresponds to the composition of two reflections through concentric spheres. Indeed, if we
chooser1 andr2 such thatr2

2/r2
1 = a, and ifS1 andS2 denote reflections through concentric

spheres centered at the origin with radiusr1 andr2, then,

S2 ◦ S1(h) = r2
2

r2
1

h = ah.

If a is a strictly negative number, the mappingh → ahdecomposes into four reflections
through the coordinate planes and two reflections through concentric spheres centered at
the origin.

Let nowa be any non-zero quaternion, writinga = |a|u, whereu is a unit quaternion,
one gets the requested decomposition for the mappingh → ah.

The mappingsh → hacan be decomposed in the same fashion. �

The previous demonstration is more or less an adaptation of the decomposition of simil-
itudes in the complex plane into product of reflections through circles and lines.

Theorem 1. Any linear fractional mapping can be decomposed into the product of an even
number of reflections through planes and spheres ofR

4.

Proof. Let ϕ be a linear fractional mapping.

ϕ(x) = (ah+ b)(ch+ d)−1 with a, b, c, d ∈ H.

Assume first thatc 6= 0, thenb − ac−1d cannot be zero because if it was, the system

au+ bv = 0,

cu+ dv = 0,

would have a non-trivial solution:(−c−1d, 1). The following transformations may thus be
decomposed into an even number of reflections, and their composition givesϕ:

h → ch,
h → h + d,

h → h−1,

h → (b − ac−1d)h,

h → h + ac−1.



J.-O. Moussafir / Journal of Geometry and Physics 37 (2001) 183–189 189

Let us assume now thatc = 0. The coefficientsa andd cannot be 0 becauseϕ is not
degenerate. Thus

ϕ(h) = ahd−1 + bd−1,

which can be decomposed into an even number of reflections. �

We finally have, as announced, the following result.

Theorem 2. The set of quaternionic linear fractional transformations form a group under
composition which is isomorphic toMöb+

4 , and to the group of direct isometries ofH5.

This result is meant to be added to the list of trinities that V.I. Arnold presented in [1]
and [2].
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